
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Model of Computer Architecture for Online Social
Networks Flexible Data Analysis

The case of Twitter data

Romain Giovanetti
CRISTAL Lab

University of Lille
Lille, France

romain.giovanetti@univ-lille1.fr

Luigi Lancieri
CRISTAL Lab

University of Lille
Lille, France

luigi.lancieri@univ-lille1.fr

Abstract—Since several years, there is an increasing interest
for new services based on the analysis of data coming from online
social networks. Such services can, for example, provide the e-
reputation of a product or a company, detect new trends in a
commercial, social or political context, etc. The huge quantity of
data is an opportunity in term of representativeness but is also
difficult to manage. Within Twitter, for example, it appears that
the huge stream of data is, most of the time, incompatible with a
flexible analysis unless to have high computer resources. The only
practical solution is often to observe in a static way a limited
portion of a phenomenon in a limited time slot. This paper is
devoted to the study of necessary conditions to provide an
equilibrium between the computer architecture complexity and
the analysis flexibility.

Keywords—flexible data analysis; online social network;
twitter; computer architecture; distributed database; platform

I. INTRODUCTION

The OSNs (i.e., Online Social Networks) are becoming
more and more central in our society. But, at first, these tools
were seen as a curiosity by researchers who considered them as
unimportant or playful. Actually, from their point of view, the
gain provided by OSNs compared with existing Internet
services such as email or blogs, for instance, was not clear.

Over time, the evolution of the socio technical context has
changed this perception and has resulted in a situation where
researches related to OSNs have, in recent years, increased
dramatically, involving many disciplines. In fact, the increasing
number of users and the democratization of mobile
technologies make that OSNs’ data are a true mirror of society.
Indeed, interactions in text mode, image or video show the
tastes or the concerns of individuals as well as their social,
political or economic preferences. This is particularly visible in
the case of Twitter, which produces an, almost immediate echo
of all important events from anywhere in the world. This
reactivity appears to be higher than that of the press even if it is
less structured. For instance, Paul S. Earle and his colleagues
show that, by using Twitter’s data, about 75% of the earthquake
detections occur within 2 minutes of the origin time [29] (see
also [9]). This is considerably faster than seismograph
detections in poorly instrumented regions of the world. Many
other studies in the domain of public health, security, economy,
etc. show that OSNs can be useful, not only to be rapidly
informed but also in order to provide many details for the
diagnosis of events, and forecast their evolution. It is also

interesting to see that the use of OSNs by end users has also
evolved in parallel. A 2015 report from Pew Research Center
tells us that clear majorities of Twitter users (63%) and
Facebook users (63%) now say each platform serves as a
source for news about events and issues outside the realm of
friends and family [30].

These examples explain why the potential of OSNs started
to mobilize researchers and businesses, who have seek to
exploit the wealth of "big data" linked to interactions between
users. The challenge is as much financial as scientific. On one
hand financial, because OSNs’ data open the way to
enhancement of existing functionalities at lower cost. This is
the case of opinion polls that, in an ideal case, could be done
without face-to-face interviews, providing a fastest and most
accurate image of collective opinions. On the other hand
scientifically, because these data pave the way to forms of
observation of human behavior unthinkable up to now. All this
potential is based on the analysis of data related to
interpersonal acts of communication (tweets, Facebook status
updates, short videos on Vine, etc.), as well as the context in
which these communications are carried out (time, localization,
popularity, etc.).

Beyond the difficulty inherent in the data analysis, which
involves skills in social science domain, the features of the
underlying computers systems also pose many problems. They
include in particular the constraints of data collection,
automatic processing of linguistic data, and Human–computer
interaction (HCI). These constraints arise because the vast
amount of information generated in real time requires a
powerful and adaptable computer architecture. Josh James
summarizes the situation stating that “data never sleeps”, for
instance, during one minute 347 222 tweets are posted, 4 166
667 users like something on Facebook, and 1 736 111 photos
are published on Instagram [1]. In the particular case of
Twitter, the processing of linguistic data is complicated by the
low length of status (140 characters) and the high level of noise
(bad spelling, etc.). The constraints of the user interface appear
by the need to synthesize the information extracted from the
analysis. In other words, under what form should be
represented the information (charts, alerts, etc.) in order to give
an accurate meaning with respect to the observer's needs? We
will see that to highlight an event or a trend, it is necessary to
take into account, in combination, all of these constraints.

Most researchers chose the option of collecting tweets
corresponding to the topic they wish to analyze, at the time

IEEE/ACM ASONAM 2016, August 18-21, 2016, San
Francisco, CA, USA
978-1-5090-2846-7/16/$31.00 © 2016 IEEE

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

they need them. For example, when one wants to know the
public opinion on the brand iPhone, he collects and analyzes
tweets containing the keyword iphone. In this case, the analyst
must be patient until enough data have been collected. For a
trend analysis, it may take several days. If, once this analysis
obtained, one realizes that it is useful to compare the previous
results to other smartphone brands, it will be necessary to wait
again that some new data have been collected. As we can see,
the problem with such approach is that it inhibits the analyst
spontaneity. Indeed, he must carefully anticipate requests about
data that he could need. If during the analysis process, some
data miss, he could be discouraged to have to wait several more
days to get them.

The alternative approach is to broaden the thematic field of
data to collect. If we take the previous example, one will not
only collect tweets containing the keyword iphone but also
those with related words (e.g., phone, smart-phone, mobile,
etc.). It is possible thanks to associative networks (semantic
linked words). This approach has many advantages especially
in terms of comfort since the probability that useful data will
miss is reduced. But, from the other side, the problem is that
this option introduces constraints in terms of data load, given
the multiplication of tweets to collect. In such case, the
computers architecture should be carefully designed in order to
sustain this load, not only during the tweets reception but also
toward the user interface. Indeed, due to the huge amount of
data, the fact to provide to users a fast and interactive interface
with comparative graphs can also become a challenge. As an
example, a database architecture can be from 2 to 10 times
faster than another [20].

The following generic architecture shows the aggregation
of different elementary features such as collecting, storing, and
analyzing tweets, and managing the user interface. Beyond the
sake of combining complementary functions, this generic
architecture also allows to highlight systemic features that
emerge from this association. For example, the platform could
have a degree of autonomy by collecting tweets that have not
been explicitly requested, but have a chronological or semantic
link with the initial request. This can be a community link if we
consider this type of platform can be used by a group of
analysts. In this case, one of the analysts can anticipate queries
on topics that might interest his colleagues later. This type of
functionality is only possible by collecting tweets over a long
period of time and away from the traditional punctual strategy.

Fig. 1. A generic architecture for Twitter Data Analytics

This continuity requires the platform to be the subject of a
special attention. The architecture and its performance must be
over-sized. Furthermore, its operation must be monitored in
order to quickly identify and fix problems that would prevent
the collecting of data.

In the following, we describe the main functional blocks of
this generic platform even if they are not easy to isolate in the
literature. There is no unified approach in this domain because

authors are most of the time concerned by the analyze of data
rather than by the problems of their collecting, their storage or
the performance of their user interfaces. For example, in many
cases, modules developed for recovering Twitter’s data have
been designed to work with analysis tools (e.g., R, RapidMiner
[19], etc.) or by specifically targeting the storage architecture
(such as Elasticsearch Twitter River [38]). First, we focus on
data collecting from Twitter. We describe the form of these data
and the means proposed by the social network to recover them.
We then list technical tools for tweets analysis. Next, we
present a state of the art related to platforms for collecting and
processing Twitter’s data. The type of database used and the
features of their user interface are summarized in order to
highlight their strength and weakness. Later we discuss about
user interfaces for data analysis. Finally, we present as a case
study the platform we developed for Twitter’s data analysis.

II. COLLECT OF TWITTER DATA

Twitter is a free micro-blogging platform, which exists
since March 21th, 2006 [2]. For now, users publish messages
(tweets) of a maximal length of 140 characters, but regularly,
the company questions this artificial limit. Actually, Twitter
will soften the 140 characters rule soon (may 2016) [39]. This
debate is not neutral because short messages determine a
particular use marked by spontaneity and simplicity. The
popularity of SMS is unwavering on smartphones while more
advanced forms of messaging are now available. This shows us
that short messages are more than a fad. The tweets can be sent
to a private circle of readers but are usually open to the public.
They are not editable; they can only be removed. Users can be
their authors; they can retweet them (i.e. cite) or add them to
their favorites. These actions have been interpreted by some
authors from a social point of view. The retweet action, for
instance, can be seen as an agreement, a recommended reading,
an information sharing, a flattery, a snapshot of an event, a
payback or a greater exposure [3].

In terms of data structure, tweets may contain different
entities such as a mention of another user (e.g., @userT), a
marker of metadata (such as "hashtags" like #subject25) or an
URL that can lead to another OSN, a media hosting service, or
a website. If an URL targets a media (such as a picture, a video
or a live stream video), some extra metadata can indicate its
type or its dimensions. Thus, the media is automatically
displayed below the tweet as a card [4], saving users to follow
its URL in a new tab of their web browser. In addition to these
principal data, an appendix of additional metadata is also
available. It contains among others the unique identifier of the
tweet, a geotag, the language of the tweet (automatically
determined by Twitter [5]), and the number of times the tweet
was retweeted and favorited [6].

Many solutions are available to collect and analyze these
data. Twitter offers APIs (i.e., Application Programming
Interfaces) [10] since 2006. The policy of Twitter regarding
them is that a minority of consumers has a full access to the
tweets (Firehose) and the rest has a limited access (Public
APIs). Both of them provide only publicly published tweets.

Getting a permission to access the Firehose is practically
impossible and is often the subject of a private monetized
contract between Twitter and a big private actor of the social
analysis world. In recent months, Twitter has taken back hold
on the Firehose and many companies have seen their access cut
[36].

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

The restricted access offers two sets of APIs: REST (i.e.,
Representational State Transfer) APIs and Streaming APIs.
Studies that focus on entities such as hashtags, terms or
keywords in tweets, tend to use the REST APIs, while studies
that attempt to observe, for instance, longitudinal of movies or
politics, use the public Streaming APIs. These APIs are free but
require a free Twitter account. The data accessible via the
REST APIs are severely limited because Twitter imposes
download rate limits divided into 15 minute intervals.
Similarly, Streaming APIs provide a limited access to the real-
time stream of tweets that represents less than 1% of the total
flow. From a technical point of view, Twitter uses OAuth to
provide authorized access to its APIs. The REST APIs are
based on the client-server model: a connection between Twitter
and a consumer is dynamically created for each query.
Conversely, Streaming APIs rely on a continuous connection
between Twitter and consumers; they are designed to send
large volumes of data.

All the scientific works quoted in this paper make use of
the free restricted access (REST APIs and Streaming APIs).

III. TWITTER ANALYTICS TOOLS

To show how the initiatives related to the Twitter data
analysis are many, let us quote the post of Pam Dyer where he
already identified in 2013, 50 tools, mostly online, for
analyzing the content of OSNs, among which 20 more
specifically dedicated to Twitter [21, 22]. It’s interesting to note
the high volatility of these websites. Indeed, only 6 of them are
still operational today (March 2016). Many of those who are
closed invoke a change in the Twitter APIs as the main reason
of their fate. Beyond that reason, which could be called
functional, it should also be noted that the economic model of
these websites is still to be defined. Actually, even in the case
of Twitter, which has already a very large community of users,
the viability of the business model is still sometimes debated
[23]. This explains that, apart from very marginal business
initiatives, the development tools and the analytics websites are
primarily related to evaluation projects in academia.

In general, the collected tweets must be shaped and
processed to bring out elements of knowledge buried in the,
sometimes weak, signals and data to reveal trends or alerts.
Some of these features may be supported by the existing data
mining tools [7]. However, the form of tweets and their
associated data (retweets, author’s id, etc.) have specific
characteristics that imply a mainly linguistic pretreatment,
especially important if one wishes to make operational data
analysis (automatic, scalable, etc.).

These different features are related by data structures and
high level programming languages. In his book Mining the
Social Web [11], M. A. Russell explains how to datamine on
various OSNs using Python as programming language. In the
chapter related to Twitter, he uses in his demonstrations the
Python Twitter Tools module [12]. He also addresses the
analysis of data in various forms but does not mention the issue
of storage. Even without an external database, the language
Python allows to export data into text files (such as CSV, XML
or JSON). Similarly, the book Twitter Data Analytics written
by S. Kumar [19] addresses the questions of the collecting, the
processing and the visualization of statistical indicators of
Twitter’s data. He uses the language Java and associated
libraries to perform these treatments.

Beyond the specific application, several developers have
designed plugins to adapt the existing data mining tools to the

Twitter APIs. For example, “Analytics module for Twitter”
allows one to query Twitter directly into Microsoft Excel 2010.
One can perform analysis like who are the most active users,
which tweets correspond to a given hashtag or which tweets are
rather positive or negative [24]. Some authors use the reporting
features of Google Analytics to track the activity of OSNs and
especially Twitter [25]. These approaches are particularly
suited to marketing strategies aimed, for instance, to measure
the popularity of a product, an event or a TV show.

To perform more sophisticated analysis, it is more
interesting to use specialized tools in data mining and statistical
computing. Most of these tools have a connector that can be
interfaced with the Twitter APIs. We describe below the open-
source and free tools, but these opportunities also exist for
commercial products (Matlab, Mathematica, etc.).

MOA (i.e., Massive Online Analysis) is an open source tool
specialized in data flow analysis and also allows developing
recommendations systems [27]. MOA originated in Weka, a
popular data-mining tool (classification, etc.). These two tools
offer together great versatility. The MOA Twitter reader
module allows in particular adapting these tools to the Twitter
context. In addition to the collecting, it also offers to detect
changes in real time, such as the identification of terms whose
frequency changed. It also allows an analysis in real-time of
feelings.

RapidMiner is a popular data analysis tools available since
2006. There are now a free version (on sourceforge.net) and a
commercial version ($ 2,000). Recently, RapidMiner studio
offered features for analyzing the activity on Twitter,
multilingual texts, sentiment, etc. [26] (see also Knime [28]).

On July 24th, 2009, the twitterR module for R makes its
first appearance. R is free software for data processing and
statistical analysis, which implements the programming
language S. This module is a wrapper for high-level dialogues
with the Twitter APIs. It simplifies the OAuth authentication
and transforms S language requests to HTTP REST requests
[13]. Since February 23th, 2014, it is possible to easily record
tweets and other information in a relational database
management system like RSQLite [14].

The use of data analysis tools reveals their limits in terms
of data storage, features and HCI, and can be first exploratory
steps in the process of designing a data analysis platform that
will offer more features and will better handle huge volumes of
data.

IV. TWITTER DATA ANALYSIS PLATFORMS

The majority of the available scientific literature on the
subject reveals that there are many technical solutions to
recover data from Twitter and many publications make use of a
relational database to store them. Comparing the different
architectures that were discussed in the scientific literature is a
complicated task because studies present their work with a
variable level of clarity and specificity. Nevertheless, we
ordered them in two categories according to how they store
their data. On one hand, we list platforms that rely on a
centralized database, on the other hand, those that make use of
a distributed database.

In March 2009, K. Makice publishes the book “Twitter
API: Up and Running - Learn How to Build Applications with
the Twitter API”. He explains how to capture tweets via the
Twitter APIs using the language PHP and how to store them in
a MySQL relational database [31].

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

In 2010, R. D.W Perera, S. Anand, K. P. Subbalakshmi and,
R. Chandramouli present a software architecture for developing
stochastic models to characterize OSNs [37]. They focus on the
time intervals between the creation of tweets and the frequency
of retweets made by a user of the tweets from another user. To
do so, they make use of the Search API from Twitter REST
APIs, the languages Python and PHP, and a centralized
MySQL database. The collecting of tweets is written in Python
and uses the Twython library. Their capture script runs every 5
minutes. In order to determine the location of tweets, they
employ a Yahoo web service that turns an address into GPS
coordinates. Captured tweets are stored in the MySQL database
by extracting their id, their timestamp and the id of their author.
A PHP application reads and displays the contents of the
database.

In early June 2010, M. Mathioudakis and N. Koudas are co-
authors of an article that deals with a two parts application
(back-end and front-end), which allows highlighting trends on
Twitter when they occur [8]. The back-end part, written in
Java, uses the Twitter Streaming APIs to collect data in real
time and process them later. It stores the captured tweets, with
all their metadata, in a module called index and sends to a
bursty keywords detection module a simplified flow that
contains only the text part of the tweets with their timestamp.
Once the simplified flow is analyzed and trends are detected, a
trend analysis module retrieves additional information about
detected trends from the previously generated index module.
The front-end part, called TwitterMonitor, lets final users view
the results.

In 2012, M. Oussalah, F. Bhat, K. Challis, and T. Schnier
describe a software architecture that collects tweets sent from a
predefined geographical area and over a specified period of
time using the Twitter Streaming APIs. It also performs text
queries over captured data, and groups them by location [32].
Their architecture uses the Python web framework Django
coupled with Apache Lucene. They are linked to a MySQL
database in order to have both an efficient indexing powered by
Lucene and a relational model in conjunction with the cross
platform side of MySQL. The Twitter4J library is employed to
collect tweets. To prevent the risk of interruption during the
collecting, they use two different computers with two different
operating systems: Microsoft Windows and Apple OS X,
located in two different places. When the capture is complete,
the databases produced by both computers are merged without
redundancy by a simple algorithm. The user interface served by
their architecture allows users to watch the tweets captured on
an embedded Google Maps map. To quickly retrieve tweets for
the map, they are stored in a geographical index. This index is
based on the joint use of GeoDjango and a spatial database.
This basic spatial database is a PostgreSQL database with the
PostGIS spatial extension. It allows querying ranges on
location points.

At the end of October 2012, A. Black, C. Mascaro, M.
Gallagher, and S. P. Goggins describe their architecture, named
Twitter Zombie, to capture, socially transform and analyze the
twittosphere. This architecture aims to provide a consistency in
the results of social sciences and to standardize the data
collecting in order to be able to reproduce observations
identically and afterwards [33]. It relies on the Search API of
Twitter REST APIs and is written in PHP. The collected data
are stored in a MySQL database. Twitter Zombie retrieves data
from Twitter by running independent research jobs in
continuous and on regular basis. Jobs are programmed,
configured, and stored in a MySQL database. This system is

launched each minute by the cron Linux scheduler. The scheme
of the database has been optimized for insertions in order to
prevent the storage of data to be a bottleneck when an
important event occurs. This database tweak makes its size
grows quickly. To build the jobs, they use the advanced search
page of Twitter’s website because it validates the search criteria
and produces an URL they can reuse during their calls to the
Twitter APIs.

In December 2013, B. Molnar and Z. Vinceller publish the
results of a comparative study between five architectures
designed to investigate the OSNs, and propose a new approach
based on them [18]. They observed that the majority of the
studied architectures uses open-source software and primary
data are manipulated either by a central relational system or
central a NoSQL system, however NoSQL systems store
documents more quickly. They also noted that the hardware
architectures rely mostly on "commercial off-the-shelf"
components. They identified several problems these
architectures are brought to meet. First, data recovery is often
limited by the APIs and the technical reception capabilities.
Second, if a real-time analysis is required, it takes a lot of
resources to retrieve all the data and analyze them correctly.
Third, it is difficult to make textual analysis on OSNs because
there are great differences between them and it requires
specific routines for each of them. Finally, the link structure
between messages of OSNs differs greatly from traditional
website connections and a storage issue arises from this
difference. It should be solved in a different way, and
performance and efficiency become central to explore those
links. To address the performance issues related to time and
storage, they propose to use HADOOP, a highly scalable
analytics platform for processing large volumes of structured
and unstructured data, and MapReduce processes as much as
possible.

November 29th, 2011, T. Hoff describes the physical and
logical architecture used by DataSift [15] to mutualize the
expensive Firehose of Twitter. They redistribute data to
developers who can’t afford the cost of the Firehose and the
charge of having a big dedicated hardware architecture. Indeed,
at the time, he said accessing to the Firehose was worth $25
000 per day for a daily volume of 250 million of tweets. 30
peoples and 4 years of development were necessary to build a
system that used 936 processors and many SSDs. The company
was using C++ for critical components, PHP to provide an API
to its clients, Java/Scala to communicate with HBase and
launch Map/Reduce tasks, MySQL, an Hbase cluster (30
hadoop nodes, 400TB of storage) and Memcached as cache.
DataSift transformed tweets before they we redistributed, they
added to them informations such as their language, their
feelings, the gender of their author and their Klout level (a
social influence indicator). Customers were billed in real time
depending on the amount of service used. This service was
closed August 13, 2015 following the announcement of April
11th, 2015 about the end of the partnership between Twitter
and DataSift. [16]

In 2012, D. Preot¸iuc-Pietro, S. Samangooei, T. Cohn, N.
Gibbins, and M. Niranjan present the framework they
developed to efficiently proceed texts resulting from data flows
of OSNs [17]. This framework provides command line tools to
treat tweets, already captured, and live flows. It works with
modules. To deal with the huge amount of data to process, they
make use of the MapReduce framework to distribute
calculations and data storage on a cluster of several computers.
Their idea is to chain analysis tasks in a workflow. Each task

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

can add new metadata to the processed tweet but can’t modify
it or its already existing metadata. At the time of writing their
paper, they already developed 3 modules for their framework:
Tokenization, which cuts the text of a tweet and identify
various entities, Language Detection, which automatically
detects the language of a tweet, and Stemming, which retrieves
root words for easier analysis.

We’ve seen that depending of the goals of the platform and
its final users’ needs, the type of database employed to store
data is different. Centralized databases become bottlenecks
when the number of tweets to save explodes, this case would
more likely happen when using the Streaming APIs. We’ve
also observed that platforms offer a variety of user interfaces
and features. User interfaces play a significant role in the
designing process of a platform. They are deeply related to the
analysts’ needs and the possibilities given by the OSNs’ APIs.

V. USER INTERFACES

User interfaces are fairly standard and depend on the user’s
expertise level. We can therefore find search engines type Web
interfaces [21] with rich refunds [37] such as graphics or word
clouds. We can also find map-based interfaces [32] or already
preconfigured interfaces that display results such as current
trends [8]. Conversely, the analyst will launch guidelines on the
command line or use environments like R [13] or Weka.

The design of the user interfaces reveals two issues. The
first is to identify information to input and to return, and under
what form. The second is to identify what one seeks to observe
and translate it into a treatment to be applied to the inputs.
Depending on the level of expertise of the analyst, this
treatment will be either flexible or rigid. In general, in the case
of Twitter, the number of entries is limited to the available
types of metadata. The current common use is limited to enter
targeted keywords or hashtags and possibly specify the
duration of the capture. It is also possible to filter the results
according to various criteria (e.g., retweets, geographic
location, time of creation, etc. [17, 22, and 32]) but the use of
these filters often requires a good level of expertise from the
analyst. In addition to filters, many various, more or less
conventional treatments are possible in order to extract
knowledge from tweets, For instance, it is possible with a
suitable language processing to identify the polarity of a tweet,
the gender of its author and his age, or even his socio-economic
categories. These treatments are complex and the results are
sometimes very rough, but they allow understanding the tweets
from new angles. These operations primarily based on
language processing have yet to be discovered or improved
(see the features of data mining tools).

The results to return and their forms remain a relatively
open question. A simple and classic level of use is the
quantitative representation. We can, for example, visualize the
popularity of an event by counting the number of tweets and
retweets related to a specific hashtag, either instantly or by
representing its evolution over a period of time in the form of a
curve. We can also carry out this measurement in comparative
form, for instance, if one wishes to compare the popularity of
both politicians. Things get complicated if you want to add
more dimensions to the analysis because in this case, the
classical representations lose of their readability. For instance,
the representation of the opinion over a period classified by
genders concerning the individuals who are candidates in an
election is a real headache in terms of representation.

The user interfaces also provide management capabilities,
monitoring, security management, etc. This is particularly true
in the particular case of platforms that make use of distributed
database and are often stored in cold and remote areas.

VI. CASE STUDY

According to figure 1, we designed a partially distributed
architecture based on the Twitter Streaming APIs to offer a
SaaS (i.e., Software as a service) to scientists and
policymakers. Our platform allows longitudinal studies of
various subjects in near real time. Users can specify the words
they are interested in. Our system merges all their wishes in a
list of keywords to track and sends it to the Streaming APIs as
parameter. Plus, we cover a large spectrum of topics thanks to
associative networks. Thus, we offer a high level of flexibility.
Generally, to start querying our service, users don’t have to
wait while data are collected because data are already
collected.

We use as data storage the distributed search engine
Elasticsearch. It is based on Apache Lucene and is open source.
This technological choice has several advantages for collecting
tweets. Firstly, it tokenizes the tweets during their indexing,
allowing us to have real-time and full-text search capabilities.
Thus, we can observe trends in real time through our user
interface. Secondly, Elasticsearch maintains updated replicas of
shards of the tweets index to prevent an eventual data loss
caused by hardware failures. Thirdly, when the number of
tweets sent by Twitter APIs increases sharply, it is crucial to
have a system that is very quick to perform inserts in order to
avoid to be disconnected [40]. Elasticsearch shows up to two
times faster than MySQL for data insertion [20]. Finally, tweets
sent by Twitter APIs are JSON objects that Elasticsearch can
index without conversion thanks to its JSON document-
oriented side. Elasticsearch also supports plug-ins. We used to
collect tweets with the plug-in Twitter River, but we recently
replaced it with a homemade Python service, which uses the
Tweepy library, because river type plug-ins were removed in
Elasticsearch 2 [34]. The interactions with Elasticsearch rely on
HTTP REST requests and queries are JSON objects, so
Elasticsearch is developer friendly.

We use a total of 5 computers to operate our architecture (2
x Intel Xeon 6 cores @ 3.20 GHz, 1 Intel Xeon 4 cores @ 2.66
GHz, 1 Intel Xeon 4 cores @ 2.4 GHz, and 1 Intel Core 2 Quad
Q9650 4 cores @ 3.00GHz). We currently have a storage
capacity of 12TB disk and 100GB RAM. Among our 5
computers, 4 are on a private local network and play the role of
nodes in our Elasticsearch cluster. One of them also runs our
services. The computer number 5 can be reached from Internet
and serves as front-end and security gate to our data. Our
architecture has the advantage of being scalable. To expand its
hardware capabilities, we can easily add one or more
computers to our Elasticsearch cluster. However, to do so we
need to reindex all the data to create enough shards of the
current tweets index in order to populate all the freshly added
computers with them. But eventually, the reindex process is
performed without having to stop the cluster and is transparent
for users of our SaaS.

Like we started to mention them above, our platform is also
composed of homemade services, they are all written in Python
and use the official Elasticsearch library. One of them ensures
that the recovering of tweets is not faulty. If this is the case, it
tries to revive in autonomous way the collecting service and
notifies administrators that something went wrong. Having a

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

reliable capture is necessary to obtain accurate results for
longitudinal studies. Some others services are related to data
analysis. They compute new data from tweets and add them to
the tweets’ metadata. The provided new data are for instance
the gender of authors or the polarity of tweets. Finally, we also
created some services to build and manage caches of buzzing
words in order to speed up the buzz observatory of our SaaS.

Scientists and policymakers use our platform through a web
application that consists in a server part (back-end) powered by
Node.js and a client part (front-end) written mostly using
AngularJS and jQuery. The server side of this app is primarily
a security layer between the Elasticsearch cluster and
connections from the Internet. The client side (front-end)
provides several tools to end users like a comparative tool with
charts, words clouds, a buzz observatory, etc. When the front-
end needs to load or refresh an AngularJS directive (e.g., a
chart, a list of tweets, etc.), the request is transmitted to the
server side. Then, the server queries the Elasticsearch cluster
and during that time, it performs requests from other users until
it finds no other task to do. There is no blocking process thanks
to the mass use of callback functions.

We evaluated the performances of our SaaS using the
following method. We opened the comparative tool of our
front-end app with Google Chrome (version 50.0.2661.102) on
our local network to avoid possible lags from Internet. Each
time a user enters an expression in the comparative tool with a
start and an end date, the controller of the tool updates the
page’s directives’ settings. These updates trigger many queries
to retrieve all the needed data. We choose the expressions
“USA”, “Paris” and “You” as unique words and in combination
for our evaluation. Each evaluated expression involves 10
queries and the combination fires a total of 30 queries. We
made use of the Network tab of the Chrome Developer Tools to
observe when all the queries started and when the latest answer
arrived. The results are shown in the bellow figures 2, 3 and 4.

Fig. 2. Loading time of the comparative tool with different expressions

Fig. 3. Number of tweets returned by the queries

Fig. 4. Number. of tweets stored in Elasticsearch per analysed period

We could think that the loading time is deeply linked to the
number of tweets returned by the different queries. However,
we can see in the figure 2 that the expressions “USA” and
“Paris” have similar loading times while figure 3 shows us that
for the 197 days long period, “Paris” returned a number of
tweets more than 4 times higher than “USA”. Actually, the
loading time seems to be more influenced by the total volume
of tweets present in our database (figure 4) than the success
rate of the queries (figure 3). Eventually, during our evaluation,
we also observed the following bottleneck. The loading times
may vary for our users according to the web browser they use.
Indeed, the maximum number of concurrent Ajax requests is
differently limited per domain (e.g. 6 requests in Google
Chrome and 13 in Microsoft Internet Explorer 11 [35]), making
many Ajax requests wait for empty slots to be sent by the web
browser while our architecture could handle them.

Among the tools provided by the front-end is another tool
called exportation tool that give more flexibility to our users.
Indeed, it allows reusing our collected data. They can
download the original tweets enriched with the extra metadata
added by our different analysis services, such as the gender of
authors or the polarity of the tweets. It supports JSON and CSV
formats and has a control panel to adjust the selection of tweets
to export.

VII. CONCLUSION

This article presented the challenges and some possible
solutions for the realization of a platform for collecting and
analyzing tweets. Let us note first that such architecture is
closely linked to the organization of Twitter. Indeed, a simple
change in the Twitter APIs imposes a change in the collecting
process of the platform, otherwise the whole system will stop
working or the results will be corrupted or incomplete.

Regardless of this, the biggest difficulty is related to the
power (treatment, storage) necessary to support the Twitter
Streaming APIs, which send millions of tweets to their
consumers each day. We saw that some software architectures,
such as relational databases, are less appropriate than NoSQL
ones during the data recovering except for short time punctual
analysis. Plus, distributed databases perform better and prevent
a data loss thanks to their replicated nature.

User interfaces play a primary role in the process of
designing a OSNs’ data analysis platform because they are
deeply related to the possibilities offered by the OSN’s APIs
and their limits, the needs of its future users and administrators,
and the possible fields of data-mining.

We developed a platform that offers a SaaS. It uses
associative networks to cover a large spectrum of topics

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

because we wanted to anticipate the needs of our users. We
recover data using Streaming APIs for the reason that they
allow recovering millions of tweets each day. Furthermore, we
chose the distributed search engine Elasticsearch to store
tweets. It provides a distributed database system suited to
support sudden tweets reception rises while tokenizing tweets
during their indexing, making queries in near real time
possible. All these choices were motivated by the will of giving
always more flexibility to analysts.

However, even with our over-sized platform and the
technical choices we made, we’ve seen that the question of
performance is still valid because we are accumulating day by
day tweets and over a longer and longer period. Indeed, the
more we have tweets, the more the performances are low. This
raises several questions. Should captured data have an
expiration date and thus reduce the flexibility of the analyst?
Could a peer-to-peer architecture have a better cost/power ratio
than already existing platforms?

ACKNOWLEDGMENT

This work was realized thanks to funding from the FUI
Camille 3DS project. We wish to thank the partners and
funders of the project.

REFERENCES

[1] J. James, ‘Data never sleeps 3,0’, 2015. [Online]. Available:
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/. [Accessed:
4- Mar- 2016]

[2] J. Dorsey, ‘just setting up my twttr’, 2006. [Online]. Available:
https://twitter.com/jack/status/20. [Accessed: 4- Mar- 2016]

[3] B. Kiprin, ‘The Meanings of a Favorite and Retweet’, 2014. [Online].
Available: http://borislavkiprin.com/2014/01/27/meanings-favorite-
retweet/. [Accessed: 9- Mar- 2016]

[4] Twitter, ‘Twitter Cards’, 2012. [Online]. Available:
https://dev.twitter.com/cards/overview. [Accessed: 10- Mar- 2016]

[5] A. R ಠ_ಠ mann-Kurrik, ‘Introducing new metadata for Tweets’, 2013.
[Online]. Available: https://blog.twitter.com/2013/introducing-new-
metadata-for-tweets. [Accessed: 9- Mar- 2016]

[6] R. Krikorian, ‘Map of a Twitter Status Object’, 2010. [Online].
Available:
http://online.wsj.com/public/resources/documents/TweetMetadata.pdf.
[Accessed: 4- Mar- 2016]

[7] V. Gupta, G. S. Lehal, “A Survey of Text Mining Techniques and
Applications,” in Journal of Emerging Technologies in Web Intelligence,
Vol. 1, No. 1, August 2009

[8] T. Sakaki, M. Okazaki, Y. Matsuo, “Earthquake shakes Twitter users:
real-time event detection by social sensors,” In Proceedings of the 19th
international conference on World Wide Web (WWW '10). ACM, New
York, NY, USA, 851-860. 2010

[9] M. Mathioudakis, N. Koudas, “TwitterMonitor: trend detection over the
twitter stream,” In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data (SIGMOD '10). ACM,
New York, NY, USA, 1155-1158. 2010

[10] Twitter, ‘Twitter API’, 2006. [Online]. Available:
https://web.archive.org/web/20061109100343/http://twitter.com/help/api
. [Accessed: 9- Mar- 2016]

[11] M. A. Russell, Mining the Social Web, 2nd Edition. O'Reilly Media.
October 2013

[12] M. Verdone, ‘Python Twitter Tools (command-line client and IRC bot)’,
2009. [Online]. Available: http://mike.verdone.ca/twitter/. [Accessed:
16- Mar- 2016]

[13] J. Gentry, “Twitter client for R”. March 18, 2014.

[14] J. Gentry, ‘twitteR now supports database persistence’, 2014. [Online].
Available: http://geoffjentry.blogspot.fr/2014/02/twitter-now-supports-
database.html. [Accessed: 5- Mar- 2016]

[15] T. Hoff, ‘DataSift Architecture: Realtime Datamining At 120,000 Tweets
Per Second’, 2011. [Online]. Available:
http://highscalability.com/blog/2011/11/29/datasift-architecture-realtime-
datamining-at-120000-tweets-p.html. [Accessed: 15- Mar- 2016]

[16] N. Halstead, ‘Twitter Ends its Partnership with DataSift – Firehose
Access Expires on August 13, 2015’, 2015. [Online]. Available:
http://blog.datasift.com/2015/04/11/twitter-ends-its-partnership-with-
datasift-firehose-access-expires-on-august-13-2015/. [Accessed: 15-
Mar- 2016]

[17] D. Preotiuc-Pietro, S. Samangooei, T. Cohn, N. Gibbins, M. Niranjan,
“Trendminer: An Architecture for Real Time Analysis of Social Media
Text”. 2012

[18] B.Molnár, Z. Vincellér, “[19] Comparative study of Architecture for
Twitter Analysis and a proposal for an improved approach”. 2013

[19] S. Kumar, F. Morstatter, H. Liu, Twitter Data Analytics, Book Springer.
2013.

[20] D. Gouyette, ‘For my research, MySQL or Elasticsearch?’, ‘Pour ma
recherche, MySQL ou Elasticsearch ?’, 2012. [Online]. Available:
http://www.cestpasdur.com/Elasticsearch/2012/04/01/Elasticsearch-vs-
mysql-recherche.html. [Accessed: 4- Mar- 2016]

[21] P. Dyer, ‘50 Top Tools for Social Media Monitoring, Analytics, and
Management’, 2013. [Online]. Available:
http://pamorama.net/2013/05/12/50-top-tools-for-social-media-
monitoring-social-media-analytics-social-media-management-2013/.
[Accessed: 9- Mar- 2016]

[22] P. Dyer, ‘20 Top Twitter Monitoring and Analytics Tools’, 2010.
[Online]. Available: http://pamorama.net/2010/04/26/20-top-twitter-
monitoring-and-analytics-tools/. [Accessed: 9- Mar- 2016]

[23] L. Maan, Y. Abutaleb, ‘Twitter disappoints investors as user growth hits
wall’, 2016. [Online]. Available: http://www.reuters.com/article/us-
twitter-selloff-idUSKCN0VK1LJ. [Accessed: 10- Mar- 2016]

[24] Microsoft, ‘Analytics for Twitter’, 2011. [Online]. Available:
https://www.microsoft.com/en-us/download/details.aspx?id=26213.
[Accessed: 7- Mar- 2016]

[25] Google Developers, ‘Social Interactions - Web Tracking (ga.js)’, 2015.
[Online]. Available:
https://developers.google.com/analytics/devguides/collection/gajs/gaTra
ckingSocial. [Accessed: 8- Mar- 2016]

[26] Rapidminer, ‘Using the Twitter Connector’. [Online]. Available:
http://docs.rapidminer.com/studio/how-to/cloud-
connectivity/twitter.html. [Accessed: 4- Mar- 2016]

[27] MOA, ‘MOA (MASSIVE ONLINE ANALYSIS)’, 2016. [Online].
Available: http://moa.cms.waikato.ac.nz/. [Accessed: 7- Mar- 2016]

[28] Cathy Pearl, ‘Using KNIME to Find Out What Your Users Are
Thinking’, 2015. [Online]. Available: https://www.knime.org/blog/using-
knime-to-find-out-what-your-users-are-thinking. [Accessed: 9- Mar-
2016]

[29] P. Earle, D. C. Bowden, M. R. Guy, “Twitter earthquake detection:
Earthquake monitoring in a social world,” Annals of Geophysics, 2011.

[30] Amy Mitchell et al., “he Evolving Role of News on Twitter and
Facebook”, Pew Research Center, 2015.

[31] K. Makice, Twitter API: Up and Running. O'Reilly Media. 2009

[32] M. Oussalah, F. Bhat, K. Challis, T. Schnier, A software architecture for
Twitter collection, search and geolocation services. Know.-Based Syst.
37 (January 2013), 105-120.

[33] A. Black, C. Mascaro, M. Gallagher, S. P. Goggins, Twitter Zombie:
Architecture for Capturing, Socially Transforming and Analyzing the
Twittersphere.

[34] Elastic, “Rivers were deprecated in Elasticsearch 1.5 and removed in
Elasticsearch 2.0.”, 2016. [Online]. Available:
https://www.elastic.co/guide/en/elasticsearch/rivers/current/index.html.
[Accessed: 25- Mar- 2016]

[35] Browserscope, 2016. [Online] Available: http://www.browserscope.org/?
category=network&v=top. [Accessed 15-May-2016

[36] M. Bryant, “Twitter to cut off firehose resellers as it brings data access
fully in-house”, 2015. [Online]. Available:
http://thenextweb.com/dd/2015/04/11/twitter-cuts-off-firehose-resellers-
as-it-brings-data-access-fully-in-house/. [Accessed 25-May-2016]

[37] R. D. W. Perera, S. Anand, K. P. Subbalakshmi and R. Chandramouli,
"Twitter analytics: Architecture, tools and analysis," MILITARY

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

COMMUNICATIONS CONFERENCE, 2010 - MILCOM 2010, San
Jose, CA, 2010, pp. 2186-2191

[38] “Twitter River Plugin for Elasticsearch”, 2015. [Online]. Available:
https://github.com/elastic/elasticsearch-river-twitter. [Accessed 25-May-
2016]

[39] T. Sherman, “Coming soon: express even more in 140 characters”, 2016.
[Online]. Available: https://blog.twitter.com/express-even-more-in-140-
characters. [Accessed 25-May-2016]

[40] Twitter, “Connecting to a streaming endpoint”, 2016. [Online].
Available: https://dev.twitter.com/streaming/overview/connecting.
[Accessed-26-May-2016]

