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Abstract—Since several years, there is an increasing interest 
for new services based on the analysis of data coming from online 
social networks. Such services can, for example,  provide the e-
reputation of  a  product or a company, detect  new trends in a 
commercial, social or political context, etc. The huge quantity of 
data is an opportunity in term of representativeness but is also 
difficult to manage. Within Twitter, for example, it appears that 
the huge stream of data is, most of the time, incompatible with a 
flexible analysis unless to have high computer resources. The only 
practical  solution is  often to observe in a static  way a limited 
portion of  a  phenomenon in a limited time slot.  This  paper is  
devoted  to  the  study  of  necessary  conditions  to  provide  an 
equilibrium between the computer architecture complexity and 
the analysis flexibility. 
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I.  INTRODUCTION

The  OSNs  (i.e.,  Online  Social  Networks)  are  becoming 
more and more central in our society. But, at first, these tools 
were seen as a curiosity by researchers who considered them as 
unimportant or playful. Actually, from their point of view, the 
gain  provided  by  OSNs  compared  with  existing  Internet 
services such as email or blogs, for instance, was not clear.

Over time, the evolution of the socio technical context has 
changed this perception and has resulted in a situation where 
researches  related  to  OSNs have,  in  recent  years,  increased 
dramatically, involving many disciplines. In fact, the increasing 
number  of  users  and  the  democratization  of  mobile 
technologies make that OSNs’ data are a true mirror of society. 
Indeed,  interactions  in  text  mode,  image  or  video  show the 
tastes  or  the concerns of  individuals  as  well  as their  social, 
political or economic preferences. This is particularly visible in 
the case of Twitter, which produces an, almost immediate echo 
of  all  important  events  from  anywhere  in  the  world.  This 
reactivity appears to be higher than that of the press even if it is 
less structured. For instance, Paul S. Earle and his colleagues 
show that, by using Twitter’s data, about 75% of the earthquake 
detections occur within 2 minutes of the origin time [29] (see 
also  [9]).  This  is  considerably  faster  than  seismograph 
detections in poorly instrumented regions of the world. Many 
other studies in the domain of public health, security, economy, 
etc.  show that  OSNs  can  be  useful,  not  only  to  be  rapidly 
informed  but  also  in  order  to  provide  many  details  for  the 
diagnosis  of  events,  and  forecast  their  evolution.  It  is  also 

interesting to see that the use of OSNs by end users has also 
evolved in parallel. A 2015 report from Pew Research Center 
tells  us  that  clear  majorities  of  Twitter  users  (63%)  and 
Facebook  users  (63%)  now  say  each  platform  serves  as  a 
source for news about events and issues outside the realm of 
friends and family [30].

These examples explain why the potential of OSNs started 
to  mobilize  researchers  and  businesses,  who  have  seek  to 
exploit the wealth of "big data" linked to interactions between 
users. The challenge is as much financial as scientific. On one 
hand  financial,  because  OSNs’  data  open  the  way  to 
enhancement of existing functionalities at lower cost. This is 
the case of opinion polls that, in an ideal case, could be done 
without face-to-face interviews, providing a fastest  and most 
accurate  image  of  collective  opinions.  On  the  other  hand 
scientifically,  because  these  data  pave  the  way  to  forms  of 
observation of human behavior unthinkable up to now. All this 
potential  is  based  on  the  analysis  of  data  related  to 
interpersonal acts of communication (tweets, Facebook status 
updates, short videos on Vine, etc.), as well as the context in 
which these communications are carried out (time, localization, 
popularity, etc.).

Beyond the difficulty inherent in the data analysis, which 
involves  skills  in  social  science  domain,  the  features  of  the 
underlying computers systems also pose many problems. They 
include  in  particular  the  constraints  of  data  collection, 
automatic processing of linguistic data, and Human–computer 
interaction  (HCI).  These  constraints  arise  because  the  vast 
amount  of  information  generated  in  real  time  requires  a 
powerful  and  adaptable  computer  architecture.  Josh  James 
summarizes  the situation stating that “data never sleeps”, for 
instance, during one minute 347 222 tweets are posted, 4 166 
667 users like something on Facebook, and 1 736 111 photos 
are  published  on  Instagram  [1].  In  the  particular  case  of 
Twitter, the processing of linguistic data is complicated by the 
low length of status (140 characters) and the high level of noise 
(bad spelling, etc.). The constraints of the user interface appear 
by the need to synthesize the information extracted from the 
analysis.  In  other  words,  under  what  form  should  be 
represented the information (charts, alerts, etc.) in order to give 
an accurate meaning with respect to the observer's needs? We 
will see that to highlight an event or a trend, it is necessary to 
take into account, in combination, all of these constraints.

Most  researchers  chose  the  option  of  collecting  tweets 
corresponding to the topic they wish to analyze,  at the time 
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they need them. For example,  when one wants  to know the 
public opinion on the brand iPhone, he collects and analyzes 
tweets containing the keyword iphone. In this case, the analyst 
must be patient until enough data have been collected. For a 
trend analysis, it may take several days. If, once this analysis 
obtained, one realizes that it is useful to compare the previous 
results to other smartphone brands, it will be necessary to wait 
again that some new data have been collected. As we can see, 
the problem with such approach is that it inhibits the analyst 
spontaneity. Indeed, he must carefully anticipate requests about 
data that he could need. If during the analysis process, some 
data miss, he could be discouraged to have to wait several more 
days to get them.

The alternative approach is to broaden the thematic field of 
data to collect. If we take the previous example, one will not 
only  collect  tweets  containing  the  keyword  iphone but  also 
those  with  related  words  (e.g.,  phone,  smart-phone,  mobile, 
etc.).  It  is  possible thanks to  associative networks (semantic 
linked words). This approach has many advantages especially 
in terms of comfort since the probability that useful data will 
miss is reduced. But, from the other side, the problem is that 
this option introduces constraints in terms of data load, given 
the  multiplication  of  tweets  to  collect.  In  such  case,  the 
computers architecture should be carefully designed in order to 
sustain this load, not only during the tweets reception but also 
toward the user interface. Indeed, due to the huge amount of 
data, the fact to provide to users a fast and interactive interface 
with comparative graphs can also become a challenge. As an 
example,  a  database  architecture  can be from 2 to 10 times 
faster than another [20].

The following generic architecture shows the aggregation 
of different elementary features such as collecting, storing, and 
analyzing tweets, and managing the user interface. Beyond the 
sake  of  combining  complementary  functions,  this  generic 
architecture  also  allows  to  highlight  systemic  features  that 
emerge from this association. For example, the platform could 
have a degree of autonomy by collecting tweets that have not 
been explicitly requested, but have a chronological or semantic 
link with the initial request. This can be a community link if we 
consider  this  type  of  platform  can  be  used  by  a  group  of 
analysts. In this case, one of the analysts can anticipate queries 
on topics that might interest his colleagues later. This type of 
functionality is only possible by collecting tweets over a long 
period of time and away from the traditional punctual strategy.

Fig. 1. A generic architecture for Twitter Data Analytics

This continuity requires the platform to be the subject of a 
special attention. The architecture and its performance must be 
over-sized.  Furthermore,  its  operation  must  be  monitored  in 
order to quickly identify and fix problems that would prevent 
the collecting of data.

In the following, we describe the main functional blocks of 
this generic platform even if they are not easy to isolate in the 
literature. There is no unified approach in this domain because 

authors are most of the time concerned by the analyze of data 
rather than by the problems of their collecting, their storage or 
the performance of their user interfaces. For example, in many 
cases,  modules developed for recovering Twitter’s data have 
been designed to work with analysis tools (e.g., R, RapidMiner 
[19], etc.) or by specifically targeting the storage architecture 
(such as Elasticsearch Twitter River [38]). First, we focus on 
data collecting from Twitter. We describe the form of these data 
and the means proposed by the social network to recover them. 
We then  list  technical  tools  for  tweets  analysis.  Next,  we 
present a state of the art related to platforms for collecting and 
processing Twitter’s data.  The type of database used and the 
features  of  their  user  interface  are  summarized  in  order  to 
highlight their strength and weakness. Later we discuss about 
user interfaces for data analysis. Finally, we present as a case 
study the platform we developed for Twitter’s data analysis.

II. COLLECT OF TWITTER DATA

Twitter  is  a  free  micro-blogging  platform,  which  exists 
since March 21th, 2006 [2]. For now, users publish messages 
(tweets) of a maximal length of 140 characters, but regularly, 
the  company  questions  this  artificial  limit.  Actually,  Twitter 
will soften the 140 characters rule soon (may 2016) [39]. This 
debate  is  not  neutral  because  short  messages  determine  a 
particular  use  marked  by  spontaneity  and  simplicity.  The 
popularity of SMS is unwavering on smartphones while more 
advanced forms of messaging are now available. This shows us 
that short messages are more than a fad. The tweets can be sent 
to a private circle of readers but are usually open to the public. 
They are not editable; they can only be removed. Users can be 
their authors; they can retweet them (i.e. cite) or add them to 
their favorites.  These actions have been interpreted by some 
authors  from a social  point  of  view. The retweet  action, for 
instance, can be seen as an agreement, a recommended reading, 
an information sharing,  a  flattery, a  snapshot of  an event,  a 
payback or a greater exposure [3].

In  terms  of  data  structure,  tweets  may  contain  different 
entities  such as a mention of  another  user  (e.g.,  @userT),  a 
marker of metadata (such as "hashtags" like #subject25) or an 
URL that can lead to another OSN, a media hosting service, or 
a website. If an URL targets a media (such as a picture, a video 
or a live stream video), some extra metadata can indicate its 
type  or  its  dimensions.  Thus,  the  media  is  automatically 
displayed below the tweet as a card [4], saving users to follow 
its URL in a new tab of their web browser. In addition to these 
principal  data,  an  appendix  of  additional  metadata  is  also 
available. It contains among others the unique identifier of the 
tweet,  a  geotag,  the  language  of  the  tweet  (automatically 
determined by Twitter [5]), and the number of times the tweet 
was retweeted and favorited [6].

Many solutions are available to collect and analyze these 
data.  Twitter  offers  APIs  (i.e.,  Application  Programming 
Interfaces)  [10]  since  2006.  The policy  of  Twitter  regarding 
them is that a minority of consumers has a full access to the 
tweets  (Firehose)  and  the  rest  has  a  limited  access  (Public 
APIs). Both of them provide only publicly published tweets.

Getting a permission to access the Firehose is practically 
impossible  and  is  often  the  subject  of  a  private  monetized 
contract between Twitter and a big private actor of the social 
analysis world. In recent months, Twitter has taken back hold 
on the Firehose and many companies have seen their access cut 
[36].
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The restricted access offers two sets of APIs: REST (i.e., 
Representational  State  Transfer)  APIs  and  Streaming  APIs. 
Studies  that  focus  on  entities  such  as  hashtags,  terms  or 
keywords in tweets, tend to use the REST APIs, while studies 
that attempt to observe, for instance, longitudinal of movies or 
politics, use the public Streaming APIs. These APIs are free but 
require  a  free  Twitter  account.  The  data  accessible  via  the 
REST  APIs  are  severely  limited  because  Twitter  imposes 
download  rate  limits  divided  into  15  minute  intervals. 
Similarly, Streaming APIs provide a limited access to the real-
time stream of tweets that represents less than 1% of the total 
flow. From a technical point of view, Twitter uses OAuth to 
provide  authorized  access  to  its  APIs.  The  REST APIs  are 
based on the client-server model: a connection between Twitter 
and  a  consumer  is  dynamically  created  for  each  query. 
Conversely, Streaming APIs rely on a continuous connection 
between  Twitter  and  consumers;  they  are  designed  to  send 
large volumes of data.

All the scientific works quoted in this paper make use of 
the free restricted access (REST APIs and Streaming APIs).

III. TWITTER ANALYTICS TOOLS

To show  how  the  initiatives  related  to  the  Twitter  data 
analysis are many, let us quote the post of Pam Dyer where he 
already  identified  in  2013,  50  tools,  mostly  online,  for 
analyzing  the  content  of  OSNs,  among  which  20  more 
specifically dedicated to Twitter [21, 22]. It’s interesting to note 
the high volatility of these websites. Indeed, only 6 of them are 
still operational today (March 2016). Many of those who are 
closed invoke a change in the Twitter APIs as the main reason 
of  their  fate.  Beyond  that  reason,  which  could  be  called 
functional, it should also be noted that the economic model of 
these websites is still to be defined. Actually, even in the case 
of Twitter, which has already a very large community of users, 
the viability of the business model is still sometimes debated 
[23].  This  explains  that,  apart  from  very  marginal  business 
initiatives, the development tools and the analytics websites are 
primarily related to evaluation projects in academia.

In  general,  the  collected  tweets  must  be  shaped  and 
processed to bring out elements of knowledge buried in the, 
sometimes weak,  signals  and data to  reveal  trends or  alerts. 
Some of these features may be supported by the existing data 
mining  tools  [7].  However,  the  form  of  tweets  and  their 
associated  data  (retweets,  author’s  id,  etc.)  have  specific 
characteristics  that  imply  a  mainly  linguistic  pretreatment, 
especially  important  if  one wishes  to  make operational  data 
analysis (automatic, scalable, etc.).

These different features are related by data structures and 
high  level  programming  languages.  In  his  book Mining  the 
Social Web [11], M. A. Russell explains how to datamine on 
various OSNs using Python as programming language. In the 
chapter  related  to  Twitter,  he uses  in  his  demonstrations the 
Python  Twitter  Tools  module  [12].  He  also  addresses  the 
analysis of data in various forms but does not mention the issue 
of  storage.  Even without  an external  database,  the language 
Python allows to export data into text files (such as CSV, XML 
or JSON). Similarly, the book Twitter Data Analytics written 
by S. Kumar [19] addresses the questions of the collecting, the 
processing  and  the  visualization  of  statistical  indicators  of 
Twitter’s  data.  He  uses  the  language  Java  and  associated 
libraries to perform these treatments.

Beyond the  specific  application,  several  developers  have 
designed plugins to adapt the existing data mining tools to the 

Twitter  APIs.  For  example,  “Analytics  module  for  Twitter” 
allows one to query Twitter directly into Microsoft Excel 2010. 
One can perform analysis like who are the most active users, 
which tweets correspond to a given hashtag or which tweets are 
rather positive or negative [24]. Some authors use the reporting 
features of Google Analytics to track the activity of OSNs and 
especially  Twitter  [25].  These  approaches  are  particularly 
suited to marketing strategies aimed, for instance, to measure 
the popularity of a product, an event or a TV show.

To  perform  more  sophisticated  analysis,  it  is  more 
interesting to use specialized tools in data mining and statistical 
computing. Most of these tools have a connector that can be 
interfaced with the Twitter APIs. We describe below the open-
source  and  free  tools,  but  these  opportunities  also  exist  for 
commercial products (Matlab, Mathematica, etc.).

MOA (i.e., Massive Online Analysis) is an open source tool 
specialized in data flow analysis and also allows developing 
recommendations  systems [27].  MOA originated in  Weka,  a 
popular data-mining tool (classification, etc.). These two tools 
offer  together  great  versatility.  The  MOA  Twitter  reader 
module allows in particular adapting these tools to the Twitter 
context.  In addition to the collecting, it  also offers  to detect 
changes in real time, such as the identification of terms whose 
frequency changed. It also allows an analysis in real-time of 
feelings.

RapidMiner is a popular data analysis tools available since 
2006. There are now a free version (on sourceforge.net) and a 
commercial  version  ($  2,000).  Recently,  RapidMiner  studio 
offered  features  for  analyzing  the  activity  on  Twitter, 
multilingual texts, sentiment, etc. [26] (see also Knime [28]).

On July 24th, 2009, the twitterR module for R makes its 
first  appearance.  R is  free  software  for  data  processing  and 
statistical  analysis,  which  implements  the  programming 
language S. This module is a wrapper for high-level dialogues 
with the Twitter APIs. It  simplifies the OAuth authentication 
and transforms S language requests to HTTP REST requests 
[13]. Since February 23th, 2014, it is possible to easily record 
tweets  and  other  information  in  a  relational  database 
management system like RSQLite [14].

The use of data analysis tools reveals their limits in terms 
of data storage, features and HCI, and can be first exploratory 
steps in the process of designing a data analysis platform that 
will offer more features and will better handle huge volumes of 
data.

IV. TWITTER DATA ANALYSIS PLATFORMS

The  majority  of  the  available  scientific  literature  on  the 
subject  reveals  that  there  are  many  technical  solutions  to 
recover data from Twitter and many publications make use of a 
relational  database  to  store  them.  Comparing  the  different 
architectures that were discussed in the scientific literature is a 
complicated  task  because  studies  present  their  work  with  a 
variable  level  of  clarity  and  specificity.  Nevertheless,  we 
ordered  them in two categories  according  to how they store 
their  data.  On  one  hand,  we  list  platforms  that  rely  on  a 
centralized database, on the other hand, those that make use of 
a distributed database.

In  March  2009,  K.  Makice  publishes  the  book  “Twitter 
API: Up and Running - Learn How to Build Applications with 
the Twitter API”. He explains how to capture tweets via the 
Twitter APIs using the language PHP and how to store them in 
a MySQL relational database [31].
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In 2010, R. D.W Perera, S. Anand, K. P. Subbalakshmi and, 
R. Chandramouli present a software architecture for developing 
stochastic models to characterize OSNs [37]. They focus on the 
time intervals between the creation of tweets and the frequency 
of retweets made by a user of the tweets from another user. To 
do so, they make use of the Search API from Twitter REST 
APIs,  the  languages  Python  and  PHP,  and  a  centralized 
MySQL database. The collecting of tweets is written in Python 
and uses the Twython library. Their capture script runs every 5 
minutes.  In  order  to  determine  the  location  of  tweets,  they 
employ a Yahoo web service that turns an address into GPS 
coordinates. Captured tweets are stored in the MySQL database 
by extracting their id, their timestamp and the id of their author. 
A  PHP  application  reads  and  displays  the  contents  of  the 
database.

In early June 2010, M. Mathioudakis and N. Koudas are co-
authors  of  an article  that  deals  with a  two parts  application 
(back-end and front-end), which allows highlighting trends on 
Twitter  when  they  occur  [8].  The  back-end  part,  written  in 
Java, uses the Twitter Streaming APIs to collect  data in real 
time and process them later. It stores the captured tweets, with 
all  their  metadata,  in  a  module called  index and  sends to  a 
bursty  keywords  detection  module  a  simplified  flow  that 
contains only the text part of the tweets with their timestamp. 
Once the simplified flow is analyzed and trends are detected, a 
trend  analysis  module  retrieves  additional  information  about 
detected trends from the previously generated index module. 
The front-end part, called TwitterMonitor, lets final users view 
the results.

In 2012, M. Oussalah, F. Bhat, K. Challis, and T. Schnier 
describe a software architecture that collects tweets sent from a 
predefined  geographical  area  and over  a  specified  period  of 
time using the Twitter  Streaming APIs. It  also performs text 
queries over captured data, and groups them by location [32]. 
Their  architecture  uses  the  Python  web  framework  Django 
coupled with Apache Lucene.  They are linked to  a  MySQL 
database in order to have both an efficient indexing powered by 
Lucene and a relational  model in conjunction with the cross 
platform side of MySQL. The Twitter4J library is employed to 
collect  tweets.  To prevent the risk of interruption during the 
collecting, they use two different computers with two different 
operating  systems:  Microsoft  Windows  and  Apple  OS  X, 
located in two different places. When the capture is complete, 
the databases produced by both computers are merged without 
redundancy by a simple algorithm. The user interface served by 
their architecture allows users to watch the tweets captured on 
an embedded Google Maps map. To quickly retrieve tweets for 
the map, they are stored in a geographical index. This index is 
based on the joint use of GeoDjango and a spatial database. 
This basic spatial database is a PostgreSQL database with the 
PostGIS  spatial  extension.  It  allows  querying  ranges  on 
location points.

At  the end  of  October  2012,  A.  Black,  C.  Mascaro,  M. 
Gallagher, and S. P. Goggins describe their architecture, named 
Twitter Zombie, to capture, socially transform and analyze the 
twittosphere. This architecture aims to provide a consistency in 
the  results  of  social  sciences  and  to  standardize  the  data 
collecting  in  order  to  be  able  to  reproduce  observations 
identically and afterwards [33]. It relies on the Search API of 
Twitter REST APIs and is written in PHP. The collected data 
are stored in a MySQL database. Twitter Zombie retrieves data 
from  Twitter  by  running  independent  research  jobs  in 
continuous  and  on  regular  basis.  Jobs  are  programmed, 
configured, and stored in a MySQL database. This system is 

launched each minute by the cron Linux scheduler. The scheme 
of the database has been optimized for insertions in order to 
prevent  the  storage  of  data  to  be  a  bottleneck  when  an 
important  event  occurs.  This  database  tweak  makes  its  size 
grows quickly. To build the jobs, they use the advanced search 
page of Twitter’s website because it validates the search criteria 
and produces an URL they can reuse during their calls to the 
Twitter APIs.

In December 2013, B. Molnar and Z. Vinceller publish the 
results  of  a  comparative  study  between  five  architectures 
designed to investigate the OSNs, and propose a new approach 
based on them [18].  They observed that  the majority of  the 
studied  architectures  uses  open-source  software  and primary 
data are manipulated either by a central  relational  system or 
central  a  NoSQL  system,  however  NoSQL  systems  store 
documents  more quickly. They also noted that  the hardware 
architectures  rely  mostly  on  "commercial  off-the-shelf" 
components.  They  identified  several  problems  these 
architectures are brought to meet. First, data recovery is often 
limited by the APIs  and  the  technical  reception  capabilities. 
Second,  if  a  real-time analysis  is  required,  it  takes  a  lot  of 
resources to retrieve all the data and analyze them correctly. 
Third, it is difficult to make textual analysis on OSNs because 
there  are  great  differences  between  them  and  it  requires 
specific routines for each of them. Finally, the link structure 
between  messages  of  OSNs  differs  greatly  from  traditional 
website  connections  and  a  storage  issue  arises  from  this 
difference.  It  should  be  solved  in  a  different  way,  and 
performance  and  efficiency  become central  to  explore  those 
links.  To address the performance issues related to time and 
storage,  they  propose  to  use  HADOOP,  a  highly  scalable 
analytics platform for processing large volumes of structured 
and unstructured data, and MapReduce processes as much as 
possible.

November 29th, 2011, T. Hoff describes the physical and 
logical  architecture  used  by  DataSift  [15]  to  mutualize  the 
expensive  Firehose  of  Twitter.  They  redistribute  data  to 
developers who can’t afford the cost of the Firehose and the 
charge of having a big dedicated hardware architecture. Indeed, 
at the time, he said accessing to the Firehose was worth $25 
000 per day for a daily volume of 250 million of tweets. 30 
peoples and 4 years of development were necessary to build a 
system that used 936 processors and many SSDs. The company 
was using C++ for critical components, PHP to provide an API 
to  its  clients,  Java/Scala  to  communicate  with  HBase  and 
launch  Map/Reduce  tasks,  MySQL,  an  Hbase  cluster  (30 
hadoop nodes,  400TB of storage) and Memcached as cache. 
DataSift transformed tweets before they we redistributed, they 
added  to  them  informations  such  as  their  language,  their 
feelings,  the gender  of  their  author  and their  Klout  level  (a 
social influence indicator). Customers were billed in real time 
depending  on the  amount  of  service  used.  This  service  was 
closed August 13, 2015 following the announcement of April 
11th,  2015 about the end of the partnership between Twitter 
and DataSift. [16]

In 2012, D. Preot¸iuc-Pietro, S. Samangooei, T. Cohn, N. 
Gibbins,  and  M.  Niranjan  present  the  framework  they 
developed to efficiently proceed texts resulting from data flows 
of OSNs [17]. This framework provides command line tools to 
treat  tweets,  already captured,  and live flows.  It  works with 
modules. To deal with the huge amount of data to process, they 
make  use  of  the  MapReduce  framework  to  distribute 
calculations and data storage on a cluster of several computers. 
Their idea is to chain analysis tasks in a workflow. Each task 
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can add new metadata to the processed tweet but can’t modify 
it or its already existing metadata. At the time of writing their 
paper, they already developed 3 modules for their framework: 
Tokenization,  which  cuts  the  text  of  a  tweet  and  identify 
various  entities,  Language  Detection,  which  automatically 
detects the language of a tweet, and Stemming, which retrieves 
root words for easier analysis.

We’ve seen that depending of the goals of the platform and 
its final users’ needs, the type of database employed to store 
data  is  different.  Centralized  databases  become  bottlenecks 
when the number of tweets to save explodes, this case would 
more  likely  happen  when using  the  Streaming APIs.  We’ve 
also observed that platforms offer a variety of user interfaces 
and  features.  User  interfaces  play  a  significant  role  in  the 
designing process of a platform. They are deeply related to the 
analysts’ needs and the possibilities given by the OSNs’ APIs.

V. USER INTERFACES

User interfaces are fairly standard and depend on the user’s 
expertise level. We can therefore find search engines type Web 
interfaces [21] with rich refunds [37] such as graphics or word 
clouds. We can also find map-based interfaces [32] or already 
preconfigured  interfaces  that  display  results  such  as  current 
trends [8]. Conversely, the analyst will launch guidelines on the 
command line or use environments like R [13] or Weka.

The design of the user interfaces reveals two issues. The 
first is to identify information to input and to return, and under 
what form. The second is to identify what one seeks to observe 
and translate  it  into a  treatment  to  be applied to the inputs. 
Depending  on  the  level  of  expertise  of  the  analyst,  this 
treatment will be either flexible or rigid. In general, in the case 
of  Twitter,  the  number  of  entries  is  limited  to  the available 
types of metadata. The current common use is limited to enter 
targeted  keywords  or  hashtags  and  possibly  specify  the 
duration of the capture. It is also possible to filter the results 
according  to  various  criteria  (e.g.,  retweets,  geographic 
location, time of creation, etc. [17, 22, and 32]) but the use of 
these filters often requires a good level of expertise from the 
analyst.  In  addition  to  filters,  many  various,  more  or  less 
conventional  treatments  are  possible  in  order  to  extract 
knowledge  from  tweets,  For  instance,  it  is  possible  with  a 
suitable language processing to identify the polarity of a tweet, 
the gender of its author and his age, or even his socio-economic 
categories.  These treatments are complex and the results are 
sometimes very rough, but they allow understanding the tweets 
from  new  angles.  These  operations  primarily  based  on 
language  processing  have  yet  to  be  discovered  or  improved 
(see the features of data mining tools).

The results to return and their  forms remain a relatively 
open  question.  A  simple  and  classic  level  of  use  is  the 
quantitative representation. We can, for example, visualize the 
popularity of an event by counting the number of tweets and 
retweets  related  to  a  specific  hashtag,  either  instantly  or  by 
representing its evolution over a period of time in the form of a 
curve. We can also carry out this measurement in comparative 
form, for instance, if one wishes to compare the popularity of 
both politicians.  Things get  complicated  if  you want  to  add 
more  dimensions  to  the  analysis  because  in  this  case,  the 
classical representations lose of their readability. For instance, 
the representation of the opinion over a period classified by 
genders concerning the individuals who are candidates in an 
election is a real headache in terms of representation.

The user interfaces also provide management capabilities, 
monitoring, security management, etc. This is particularly true 
in the particular case of platforms that make use of distributed 
database and are often stored in cold and remote areas. 

VI. CASE STUDY

According to figure 1, we designed a partially distributed 
architecture  based  on the  Twitter  Streaming APIs  to  offer  a 
SaaS  (i.e.,  Software  as  a  service)  to  scientists  and 
policymakers.  Our  platform  allows  longitudinal  studies  of 
various subjects in near real time. Users can specify the words 
they are interested in. Our system merges all their wishes in a 
list of keywords to track and sends it to the Streaming APIs as 
parameter. Plus, we cover a large spectrum of topics thanks to 
associative networks. Thus, we offer a high level of flexibility. 
Generally, to start  querying our service,  users  don’t have  to 
wait  while  data  are  collected  because  data  are  already 
collected.

We  use  as  data  storage  the  distributed  search  engine 
Elasticsearch. It is based on Apache Lucene and is open source. 
This technological choice has several advantages for collecting 
tweets.  Firstly, it  tokenizes  the tweets  during their  indexing, 
allowing us to have real-time and full-text search capabilities. 
Thus,  we  can  observe  trends  in  real  time  through  our  user 
interface. Secondly, Elasticsearch maintains updated replicas of 
shards  of  the  tweets  index  to  prevent  an  eventual  data  loss 
caused  by  hardware  failures.  Thirdly,  when  the  number  of 
tweets sent by Twitter APIs increases sharply, it is crucial to 
have a system that is very quick to perform inserts in order to 
avoid to be disconnected [40]. Elasticsearch shows up to two 
times faster than MySQL for data insertion [20]. Finally, tweets 
sent by Twitter APIs are JSON objects that Elasticsearch can 
index  without  conversion  thanks  to  its  JSON  document-
oriented side. Elasticsearch also supports plug-ins. We used to 
collect tweets with the plug-in Twitter River, but we recently 
replaced it with a homemade Python service, which uses the 
Tweepy library, because river type plug-ins were removed in 
Elasticsearch 2 [34]. The interactions with Elasticsearch rely on 
HTTP  REST  requests  and  queries  are  JSON  objects,  so 
Elasticsearch is developer friendly. 

We use a total of 5 computers to operate our architecture (2 
x Intel Xeon 6 cores @ 3.20 GHz, 1 Intel Xeon 4 cores @ 2.66 
GHz, 1 Intel Xeon 4 cores @ 2.4 GHz, and 1 Intel Core 2 Quad 
Q9650  4  cores  @  3.00GHz).  We currently  have  a  storage 
capacity  of  12TB  disk  and  100GB  RAM.  Among  our  5 
computers, 4 are on a private local network and play the role of 
nodes in our Elasticsearch cluster. One of them also runs our 
services. The computer number 5 can be reached from Internet 
and  serves  as  front-end  and  security  gate  to  our  data.  Our 
architecture has the advantage of being scalable. To expand its 
hardware  capabilities,  we  can  easily  add  one  or  more 
computers to our Elasticsearch cluster. However, to do so we 
need  to  reindex  all  the  data  to  create  enough shards  of  the 
current tweets index in order to populate all the freshly added 
computers  with them. But  eventually, the reindex process  is 
performed without having to stop the cluster and is transparent 
for users of our SaaS.

Like we started to mention them above, our platform is also 
composed of homemade services, they are all written in Python 
and use the official Elasticsearch library. One of them ensures 
that the recovering of tweets is not faulty. If this is the case, it 
tries to revive in autonomous way the collecting service and 
notifies administrators that something went wrong. Having a 
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reliable  capture  is  necessary  to  obtain  accurate  results  for 
longitudinal studies. Some others services are related to data 
analysis. They compute new data from tweets and add them to 
the tweets’ metadata. The provided new data are for instance 
the gender of authors or the polarity of tweets. Finally, we also 
created some services to build and manage caches of buzzing 
words in order to speed up the buzz observatory of our SaaS.

Scientists and policymakers use our platform through a web 
application that consists in a server part (back-end) powered by 
Node.js  and  a  client  part  (front-end)  written  mostly  using 
AngularJS and jQuery. The server side of this app is primarily 
a  security  layer  between  the  Elasticsearch  cluster  and 
connections  from  the  Internet.  The  client  side  (front-end) 
provides several tools to end users like a comparative tool with 
charts, words clouds, a buzz observatory, etc. When the front-
end needs to  load or  refresh an AngularJS directive (e.g.,  a 
chart,  a list of tweets,  etc.),  the request  is transmitted to the 
server side. Then, the server queries the Elasticsearch cluster 
and during that time, it performs requests from other users until 
it finds no other task to do. There is no blocking process thanks 
to the mass use of callback functions. 

We  evaluated  the  performances  of  our  SaaS  using  the 
following  method.  We opened  the  comparative  tool  of  our 
front-end app with Google Chrome (version 50.0.2661.102) on 
our local network to avoid possible lags from Internet.  Each 
time a user enters an expression in the comparative tool with a 
start  and an end date,  the controller  of  the tool  updates  the 
page’s directives’ settings. These updates trigger many queries 
to  retrieve  all  the  needed  data.  We choose  the  expressions 
“USA”, “Paris” and “You” as unique words and in combination 
for  our  evaluation.  Each  evaluated  expression  involves  10 
queries  and  the combination fires  a  total  of  30 queries.  We 
made use of the Network tab of the Chrome Developer Tools to 
observe when all the queries started and when the latest answer 
arrived. The results are shown in the bellow figures 2, 3 and 4.

Fig. 2. Loading time of the comparative tool with different expressions

Fig. 3. Number of tweets returned by the queries

Fig. 4. Number. of tweets stored in Elasticsearch per analysed period

We could think that the loading time is deeply linked to the 
number of tweets returned by the different queries. However, 
we can see  in the figure  2 that  the expressions “USA” and 
“Paris” have similar loading times while figure 3 shows us that 
for  the 197 days long period,  “Paris”  returned  a  number  of 
tweets  more  than 4 times  higher  than  “USA”.  Actually, the 
loading time seems to be more influenced by the total volume 
of tweets present in our database (figure 4) than the success 
rate of the queries (figure 3). Eventually, during our evaluation, 
we also observed the following bottleneck. The loading times 
may vary for our users according to the web browser they use. 
Indeed, the maximum number of concurrent Ajax requests is 
differently  limited  per  domain  (e.g.  6  requests  in  Google 
Chrome and 13 in Microsoft Internet Explorer 11 [35]), making 
many Ajax requests wait for empty slots to be sent by the web 
browser while our architecture could handle them. 

Among the tools provided by the front-end is another tool 
called exportation tool that give more flexibility to our users. 
Indeed,  it  allows  reusing  our  collected  data.  They  can 
download the original tweets enriched with the extra metadata 
added by our different analysis services, such as the gender of 
authors or the polarity of the tweets. It supports JSON and CSV 
formats and has a control panel to adjust the selection of tweets 
to export. 

VII. CONCLUSION

This  article  presented  the  challenges  and  some  possible 
solutions for  the realization of a platform for collecting and 
analyzing  tweets.  Let  us  note  first  that  such  architecture  is 
closely linked to the organization of Twitter. Indeed, a simple 
change in the Twitter APIs imposes a change in the collecting 
process of the platform, otherwise the whole system will stop 
working or the results will be corrupted or incomplete.

Regardless of this, the biggest difficulty is related to the 
power  (treatment,  storage)  necessary  to  support  the  Twitter 
Streaming  APIs,  which  send  millions  of  tweets  to  their 
consumers each day. We saw that some software architectures, 
such as relational databases, are less appropriate than NoSQL 
ones during the data recovering except for short time punctual 
analysis. Plus, distributed databases perform better and prevent 
a data loss thanks to their replicated nature.

User  interfaces  play  a  primary  role  in  the  process  of 
designing  a  OSNs’ data  analysis  platform because  they  are 
deeply related to the possibilities offered by the OSN’s APIs 
and their limits, the needs of its future users and administrators, 
and the possible fields of data-mining. 

We  developed  a  platform  that  offers  a  SaaS.  It  uses 
associative  networks  to  cover  a  large  spectrum  of  topics 
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because we wanted to anticipate the needs of our users.  We 
recover  data  using  Streaming  APIs  for  the  reason  that  they 
allow recovering millions of tweets each day. Furthermore, we 
chose  the  distributed  search  engine  Elasticsearch  to  store 
tweets.  It  provides  a  distributed  database  system  suited  to 
support sudden tweets reception rises while tokenizing tweets 
during  their  indexing,  making  queries  in  near  real  time 
possible. All these choices were motivated by the will of giving 
always more flexibility to analysts. 

However,  even  with  our  over-sized  platform  and  the 
technical  choices  we made,  we’ve  seen that  the question of 
performance is still valid because we are accumulating day by 
day tweets and over a longer and longer period. Indeed, the 
more we have tweets, the more the performances are low. This 
raises  several  questions.  Should  captured  data  have  an 
expiration date and thus reduce the flexibility of the analyst? 
Could a peer-to-peer architecture have a better cost/power ratio 
than already existing platforms?
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